Structural and functional characterization of the oxidoreductase alpha-DsbA1 from Wolbachia pipientis.
نویسندگان
چکیده
The alpha-proteobacterium Wolbachia pipientis is a highly successful intracellular endosymbiont of invertebrates that manipulates its host's reproductive biology to facilitate its own maternal transmission. The fastidious nature of Wolbachia and the lack of genetic transformation have hampered analysis of the molecular basis of these manipulations. Structure determination of key Wolbachia proteins will enable the development of inhibitors for chemical genetics studies. Wolbachia encodes a homologue (alpha-DsbA1) of the Escherichia coli dithiol oxidase enzyme EcDsbA, essential for the oxidative folding of many exported proteins. We found that the active-site cysteine pair of Wolbachia alpha-DsbA1 has the most reducing redox potential of any characterized DsbA. In addition, Wolbachia alpha-DsbA1 possesses a second disulfide that is highly conserved in alpha-proteobacterial DsbAs but not in other DsbAs. The alpha-DsbA1 structure lacks the characteristic hydrophobic features of EcDsbA, and the protein neither complements EcDsbA deletion mutants in E. coli nor interacts with EcDsbB, the redox partner of EcDsbA. The surface characteristics and redox profile of alpha-DsbA1 indicate that it probably plays a specialized oxidative folding role with a narrow substrate specificity. This first report of a Wolbachia protein structure provides the basis for future chemical genetics studies.
منابع مشابه
Crystallization and preliminary diffraction analysis of a DsbA homologue from Wolbachia pipientis.
alpha-DsbA1 is one of two DsbA homologues encoded by the Gram-negative alpha-proteobacterium Wolbachia pipientis, an endosymbiont that can behave as a reproductive parasite in insects and as a mutualist in medically important filarial nematodes. The alpha-DsbA1 protein is thought to be important for the folding and secretion of Wolbachia proteins involved in the induction of reproductive distor...
متن کاملThe α-Proteobacteria Wolbachia pipientis Protein Disulfide Machinery Has a Regulatory Mechanism Absent in γ-Proteobacteria
The α-proteobacterium Wolbachia pipientis infects more than 65% of insect species worldwide and manipulates the host reproductive machinery to enable its own survival. It can live in mutualistic relationships with hosts that cause human disease, including mosquitoes that carry the Dengue virus. Like many other bacteria, Wolbachia contains disulfide bond forming (Dsb) proteins that introduce dis...
متن کاملCulture and phenotypic characterization of a Wolbachia pipientis isolate.
The recent isolation of Wolbachia pipientis in the continuous cell line Aa23, established from eggs of a strain of the Asian tiger mosquito Aedes albopictus, allowed us to perform extensive characterization of the isolate. Bacterial growth could be obtained in C6/36, another A. albopictus cell line, at 28 degrees C and in a human embryonic lung fibroblast monolayer at 28 and 37 degrees C, confi...
متن کاملStructural-functional studies of peptides derived from a long-chain snake neurotoxin Naja naja oxiana
Introduction: The design and structural characterization of mini-proteins with a compact, folded structure provide insight into the complex architecture of proteins today and has long been a challenging issue in structural- functional studies. Alpha neurotoxins from snake venom have a distinct folded structure comprised of a disulphide core and three loops or “fingers” each of these loops are c...
متن کاملCloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis.
The maternally inherited intracellular symbiont Wolbachia pipientis is well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts it infects. It has been implicated in causing cytoplasmic incompatibility, parthenogenesis, and the feminization of genetic males in different hosts. The molecular mechanisms by which this fastidious intracellular bacterium causes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Antioxidants & redox signaling
دوره 11 7 شماره
صفحات -
تاریخ انتشار 2009